Extensions 1→N→G→Q→1 with N=C22 and Q=Q8⋊C4

Direct product G=N×Q with N=C22 and Q=Q8⋊C4
dρLabelID
C22×Q8⋊C4128C2^2xQ8:C4128,1623

Semidirect products G=N:Q with N=C22 and Q=Q8⋊C4
extensionφ:Q→Aut NdρLabelID
C221(Q8⋊C4) = C24.160D4φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C2264C2^2:1(Q8:C4)128,604
C222(Q8⋊C4) = C24.135D4φ: Q8⋊C4/C2×C8C2 ⊆ Aut C2264C2^2:2(Q8:C4)128,624
C223(Q8⋊C4) = C24.155D4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2264C2^2:3(Q8:C4)128,519

Non-split extensions G=N.Q with N=C22 and Q=Q8⋊C4
extensionφ:Q→Aut NdρLabelID
C22.1(Q8⋊C4) = C8.11C42φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C2232C2^2.1(Q8:C4)128,115
C22.2(Q8⋊C4) = C8.13C42φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C22324C2^2.2(Q8:C4)128,117
C22.3(Q8⋊C4) = C8.2C42φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C2264C2^2.3(Q8:C4)128,119
C22.4(Q8⋊C4) = M5(2).C4φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C22324C2^2.4(Q8:C4)128,120
C22.5(Q8⋊C4) = C42.46D4φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C2264C2^2.5(Q8:C4)128,213
C22.6(Q8⋊C4) = C2×C23.31D4φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C2232C2^2.6(Q8:C4)128,231
C22.7(Q8⋊C4) = C42.410D4φ: Q8⋊C4/C4⋊C4C2 ⊆ Aut C2264C2^2.7(Q8:C4)128,274
C22.8(Q8⋊C4) = C8.8C42φ: Q8⋊C4/C2×C8C2 ⊆ Aut C2264C2^2.8(Q8:C4)128,113
C22.9(Q8⋊C4) = C8.9C42φ: Q8⋊C4/C2×C8C2 ⊆ Aut C2264C2^2.9(Q8:C4)128,114
C22.10(Q8⋊C4) = C8.4C42φ: Q8⋊C4/C2×C8C2 ⊆ Aut C22324C2^2.10(Q8:C4)128,121
C22.11(Q8⋊C4) = C42.316D4φ: Q8⋊C4/C2×C8C2 ⊆ Aut C2264C2^2.11(Q8:C4)128,225
C22.12(Q8⋊C4) = C42.79D4φ: Q8⋊C4/C2×C8C2 ⊆ Aut C2264C2^2.12(Q8:C4)128,282
C22.13(Q8⋊C4) = C42.5Q8φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.13(Q8:C4)128,18
C22.14(Q8⋊C4) = C23.8D8φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.14(Q8:C4)128,21
C22.15(Q8⋊C4) = C42.10Q8φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.15(Q8:C4)128,35
C22.16(Q8⋊C4) = C23.Q16φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.16(Q8:C4)128,83
C22.17(Q8⋊C4) = C24.4D4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.17(Q8:C4)128,84
C22.18(Q8⋊C4) = (C2×C4).Q16φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.18(Q8:C4)128,85
C22.19(Q8⋊C4) = C2.7C2≀C4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.19(Q8:C4)128,86
C22.20(Q8⋊C4) = Q8⋊M4(2)φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2264C2^2.20(Q8:C4)128,219
C22.21(Q8⋊C4) = C24.61D4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2232C2^2.21(Q8:C4)128,252
C22.22(Q8⋊C4) = C42.415D4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2264C2^2.22(Q8:C4)128,280
C22.23(Q8⋊C4) = C42.416D4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2264C2^2.23(Q8:C4)128,281
C22.24(Q8⋊C4) = C24.157D4φ: Q8⋊C4/C2×Q8C2 ⊆ Aut C2264C2^2.24(Q8:C4)128,556
C22.25(Q8⋊C4) = C4⋊C4⋊C8central extension (φ=1)128C2^2.25(Q8:C4)128,3
C22.26(Q8⋊C4) = (C2×Q8)⋊C8central extension (φ=1)128C2^2.26(Q8:C4)128,4
C22.27(Q8⋊C4) = C42.46Q8central extension (φ=1)128C2^2.27(Q8:C4)128,11
C22.28(Q8⋊C4) = C23.30D8central extension (φ=1)32C2^2.28(Q8:C4)128,26
C22.29(Q8⋊C4) = C42.8Q8central extension (φ=1)128C2^2.29(Q8:C4)128,28
C22.30(Q8⋊C4) = C2×Q8⋊C8central extension (φ=1)128C2^2.30(Q8:C4)128,207
C22.31(Q8⋊C4) = C2×C4.10D8central extension (φ=1)128C2^2.31(Q8:C4)128,271
C22.32(Q8⋊C4) = C2×C4.6Q16central extension (φ=1)128C2^2.32(Q8:C4)128,273
C22.33(Q8⋊C4) = C2×C22.4Q16central extension (φ=1)128C2^2.33(Q8:C4)128,466

׿
×
𝔽